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Summary. Dynamical latent variable models of neural activity fall into two general classes: (1) classical, difficult-
to-scale Bayesian methods like Gaussian Process Factor Analysis (GPFA) that exploit prior knowledge and model
uncertainty; (2) scalable, deep algorithms like Latent Factor Analysis via Dynamical Systems (LFADS) without
explicit priors that may struggle in the low-trial regime and do not model uncertainty. Recent efforts to scale
the spatial and temporal resolution of (1) rely on posterior approximations, introducing approximation error and
silently skewing uncertainty estimates. One manifestation of this leakage is variance starvation or overconfidence.
We introduce a scalable probabilistic framework, the Computation Aware State Space Model (CASSM), that
preserves the mathematical interpretation of a previous work, the Computation Aware Kalman Filter (CAKF),
that quantifies this inevitable approximation error and appropriately increases uncertainty. Our work introduces a
novel loss function to learn both a low-dimensional projection and model of neural dynamics. We show that if GPFA
is a Factor Analysis model wrapped in a Gaussian Process, then CASSM is essentially a Principal Components
Analysis analogue wrapped in a Kalman Filter. Our optimization scheme achieves linear time complexity instead
of the cubic complexity (in temporal resolution) of GPFA, while also rigorously quantifying the approximation
error introduced by the low-dimensional projection. On a synthetic spiking task, we show that explicitly modeling
approximation error improves generalization even in the case where we only prioritize predictive performance.

Background. We infer states {xt}Tt=1 of an unobserved discrete-time Gauss-Markov process from a set of noisy
observations {yt}Tt=1. The Kalman filter is an algorithm for computing exact conditional distributions xt|y1:t

in O(T ). However, similar to Gaussian process-based methods like GPFA, the algorithm requires linear solves
in the number of neurons N , an O(N3) operation. While approximations can yield computational tractability,
inference then becomes as much about the approximation method as the model itself. Where these approximations
conflict in their uncertainty estimates, their scientific interpretation is unclear. By modeling this approximation
in our algorithm through the objective function, we can obtain mathematically interpretable estimates for the
difference of exact inference (a Kalman filter) and approximate inference (CASSM, an approximate Kalman filter
and smoother). That is, we can return an implicit combined uncertainty that is the sum of mathematical and
computational posterior uncertainty. For Kalman filtering distribution p and approximate filtering distribution q,
we can re-state this mathematically as:

L(Θ) = − log p(y1:T |Θ)

neg. log-marginal likelihood

+
∑

t∈[T ]DKL (q(xt|y1:t)||p(xt|y1:t))

divergence from exact filtering distribution

(1)

where Θ includes the dynamics model, measurement model, and their associated covariance functions. We achieve
the approximation by learning a low, D-dimensional projection of the pre-update covariance function. When
D = N , the divergence term vanishes and CASSM reduces to a Kalman filter with model selection. Each term
of Equation (1) is individually O(N3), but a core mathematical contribution of our framework is an equivalent
formulation that only scales cubically with respect to the number of latent factors D. While the original Gaussian
Process has O(T 3N3) computational complexity, we instead achieve O(TD3) complexity, so the method scales
prohibitively only with respect to the intrinsic dimensionality of the data. Below, we show some preliminary
results on a small synthetic spiking task.

N = 30 N = 120
Model MSETest ×10−2 NLLTest MSETest ×10−2 NLLTest

GPFA 1.06± 0.48 −0.99± 0.83 2.31± 1.07 0.26± 0.78
LFADS 0.82± 0.26 – 1.07± 0.62 –
CASSM (ours) 0.67± 0.14 −2.05± 0.11 0.63± 0.10 −2.15± 0.06
CASSMD=N 0.34± 0.03 −2.34± 0.02 0.15± 0.01 −2.51± 0.02

Figure 1: Mean-squared error (MSE) and negative log-likelihood (NLL) for latent firing
rate predictions on held-out Lorenz test data for N = 30 and 120 neurons, with standard
deviations from 5 different seeds.
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Figure 2: Learning curves


